Dimension	Quantity
[<i>M⁰L⁰T</i> ⁻¹]	Frequency, angular frequency, angular velocity, velocity gradient and decay constant
[<i>M</i> ¹ <i>L</i> ² <i>T</i> ⁻²]	Work, internal energy, potential energy, kinetic energy, torque, moment of force
[<i>M</i> ¹ <i>L</i> ⁻¹ <i>T</i> ⁻²]	Pressure, stress, Young's modulus, bulk modulus, modulus of rigidity, energy density
$[M^{1}L^{1}T^{-1}]$	Momentum, impulse
[<i>M⁰L¹T⁻²</i>]	Acceleration due to gravity, gravitational field intensity
$[M^1L^1T^2]$	Thrust, force, weight, energy gradient
[<i>M</i> ¹ <i>L</i> ² <i>T</i> ⁻¹]	Angular momentum and Planck's constant
[<i>M</i> ¹ <i>L</i> ⁰ <i>T</i> ⁻²]	Surface tension, Surface energy (energy per unit area)
[<i>M⁰L⁰T⁰</i>]	Strain, refractive index, relative density, angle, solid angle, distance gradient, relative permittivity (dielectric constant), relative permeability etc.
[<i>M⁰L²T⁻²</i>]	Latent heat and gravitational potential
[<i>ML</i> ² <i>T</i> ⁻² <i>θ</i> ⁻¹]	Thermal capacity, gas constant, Boltzmann constant and entropy
[<i>M⁰L⁰T</i>]	$\sqrt{l/g}, \sqrt{m/k}, \sqrt{R/g}$, where <i>l</i> = length <i>g</i> = acceleration due to gravity, <i>m</i> = mass, <i>k</i> = spring constant, <i>R</i> = Radius of earth
[<i>M⁰L⁰T</i> ¹]	<i>L/R</i> , \sqrt{LC} , <i>RC</i> where <i>L</i> = inductance, <i>R</i> = resistance, <i>C</i> = capacitance
[<i>ML</i> ² <i>T</i> ⁻²]	$I^{2}Rt, \frac{V^{2}}{R}t, VIt, qV, LI^{2}, \frac{q^{2}}{C}, CV^{2} \text{ where } I$ = current, t = time, q = charge, L = inductance, C = capacitance, R = resistance

Important Dimensions of Complete Physics

		Heat
Quantity	Unit	Dimension

Quantity	Unit	Dimension
Temperature (<i>1</i>)	Kelvin	[<i>M⁰L⁰T⁰θ</i> ¹]
Heat (<i>Q</i>)	Joule	[<i>ML</i> ² <i>T</i> ⁻²]
Specific Heat (<i>c</i>)	Joule/kg-K	[<i>M</i> ⁰ <i>L</i> ² <i>T</i> [−] ² <i>θ</i> [−] ¹]
Thermal capacity	Joule/K	[<i>M</i> ¹ <i>L</i> ² <i>T</i> ⁻² <i>θ</i> ⁻ ¹]
Latent heat (<i>L</i>)	Joule/kg	$[M^0L^2T^{-2}]$
Gas constant (<i>R</i>)	Joule/mol-K	[<i>M</i> ¹ <i>L</i> ² <i>T</i> ⁻² θ ⁻]
Boltzmann constant (<i>k</i>)	Joule/K	[<i>M</i> ¹ <i>L</i> ² <i>T</i> ⁻² θ ⁻]
Coefficient of thermal conductivity (<i>K</i>)	Joule/m-s-K	[<i>M</i> ¹ <i>L</i> ¹ <i>T</i> [−] ³ <i>θ</i> [−] ¹]
Stefan's constant (σ)	Watt/m²-K⁴	[M ¹ L ⁰ Τ ^{- 3} θ ⁻ ⁴]
Wien's constant (b)	Metre-K	$[M^{D}\boldsymbol{\mathcal{L}}^{1}\boldsymbol{\mathcal{T}}^{D}\boldsymbol{\theta}^{1}]$
Planck's constant (<i>h</i>)	Joule-s	$[M^1L^2T^1]$
Coefficient of Linear Expansion (α)	Kelvin ⁻¹	[<i>M⁰L⁰T⁰θ⁻¹</i>]
Mechanical equivalent of Heat (<i>J</i>)	Joule/Calori e	[<i>M⁰ L⁰ 7⁰</i>]
Vander wall's constant (<i>a</i>)	Newton-m ⁴	[<i>ML⁵ T^{- 2}</i>]
Vander wall's constant (<i>b</i>)	m³	[<i>M⁰L</i> ³ <i>T</i> ⁰]

Electricity

Quantity	Unit	Dimension
Electric charge (<i>q</i>)	Coulomb	$[M^0L^0T^1A^1]$
Electric current (<i>1</i>)	Ampere	[<i>M⁰L⁰T⁰A</i> ¹]
Capacitance (<i>C</i>)	Coulomb/volt or Farad	$\begin{bmatrix} M^{1}L^{-2}T \\ {}^{4}A^{2} \end{bmatrix}$
Electric potential (<i>V</i>)	Joule/coulomb	$[M^{1}L^{2}T^{3}A^{-1}]$
Permittivity of free space (ε_0)	$\frac{Coulomb^{2}}{Newton - metre^{2}}$	$\left[\boldsymbol{M}^{1}\boldsymbol{L}^{-3}\boldsymbol{T}^{4}\boldsymbol{A}^{2}\right]$
Dielectric constant (<i>K</i>)	Unitless	[<i>M⁰L⁰T⁰</i>]
Resistance (<i>R</i>)	<i>Volt/Ampere</i> or <i>ohm</i>	$\begin{bmatrix} M^{1}L^{2}T^{-3}A^{-}\\ 2\end{bmatrix}$
Resistivity or Specific resistance ($ ho$)	Ohm-metre	[<i>M</i> ¹ <i>L</i> ³ <i>T</i> ⁻³ <i>A</i> ⁻ ²]

Quantity	Unit	Dimension
Coefficient of Self-induction (<i>L</i>)	volt – second ampere henry or ohm- second	[<i>M</i> ¹ <i>L</i> ² <i>T</i> ⁻² <i>A</i> ⁻ ²]
Magnetic flux (ø)	<i>Volt-second</i> or <i>weber</i>	<i>[</i> M ¹ L ² T ^{−2} A ^{−1}]
Magnetic induction (<i>B</i>)	$ \frac{newton}{ampere - metre} $ $ \frac{Joule}{ampere - metre^{2}} $ $ \frac{volt - second}{metre^{2}} \text{ or } $ $ Tesla$	<i>[</i> M ⁷ L ⁰ T ^{−2} A [−] ⁷ J
Magnetic Intensity (<i>H</i>)	Ampere/metre	<i>[</i> M ⁰ L [−] ¹ T ⁰ A ¹]
Magnetic Dipole Moment (<i>M</i>)	Ampere-metre ²	<i>[</i> M ⁰ L ² T ⁰ A ¹]
Permeability of Free Space (µ ₀)	$\frac{Newton}{ampere^{2}}$ or $\frac{Joule}{ampere^{2} - metre}$ or $\frac{Volt - second}{ampere - metre}$ or $\frac{Ohm - second}{metre}$ or $\frac{henry}{metre}$	[M ¹ L ¹ T ⁻² A ⁻²]
Surface charge density (σ)	Coulomb metre ⁻²	<i>[</i> M ⁰ L ⁻² T ¹ A ¹]
Electric dipole moment (<i>p</i>)	Coulomb – metre	<i>ͺ</i> Ϻ ^ℴ ĹʹϮʹϪʹͿ
Conductance (<i>G</i>) (1/ <i>R</i>)	ohm ⁻¹	<u>/</u> M ^{−1} L ^{−2} T ³ A ² /
Conductivity (σ) (1/ ρ)	ohm ⁻¹ metre ⁻¹	<u>/</u> M ^{−1} L ^{−3} T ³ A ²
Current density (<i>J</i>)	Ampere/m ²	M ⁰ L ⁻² T ⁰ A ¹
Intensity of electric field (<i>E</i>)	Volt/metre, Newton/coulomb	M ¹ L ¹ T ⁻³ A ⁻¹
Rydberg constant (<i>R</i>)	<i>m</i> ⁻¹	М ⁰ L ⁻¹ Т ⁰